A QA Manager’s Guide to Software Testing Methodologies

Learn more about the software testing methodologies that are popularly adopted by organizations worldwide and distinguish how these methodologies differ from types of testing.

August 2, 2021
8 mins read
Last Updated September 16, 2021
Software Testing Methodologies

A QA Manager’s Guide to Software Testing Methodologies

Within the competitive software industry, there can be no space for mistakes. Software testing methodologies are pivotal for the software development life cycle, giving a sense of direction of how tests should be conducted. Let me give you an example – 

It was during the cold January of 2016 that Google Nest Smart Thermostat had one of the epic software failures – talk about being unlucky!

A software update caused the entire application to glitch, causing the batteries to drain out and leaving its consumers in a freezing cold situation, literally and metaphorically. The company was forced to respond immediately after an outcry by thousands of its users in America by releasing a new version that fixed the bug causing the issue. 

If only Nest had tested the application thoroughly before deploying the update, the company wouldn’t have been in such a delicate situation in front of its consumers. The incident proves that while the software development process requires meticulous planning, testing methodologies are equally crucial for delivering a quality product. 

So, what are these software testing methodologies, and what difference does it make to your applications?

Through this article, I will explain what a testing methodology is and how it’s different from common software testing types. But, most importantly, the article will focus on popular testing methodologies and tell you which one suits you the most. 

Software Testing Methodologies vs. Types of Software Testing

Let’s start with the differences between testing methodologies and types of software testing.

  • Software Testing Methodology

The methodology is a testing strategy for simultaneously developing and testing a software application to meet the clients’ requirements. The testing approach defines the project management, organizational structure, and software testing methods. It basically lays out the plans for conducting the tests, explains the team’s responsibilities, and opens the line of communication with respective stakeholders. Each methodology has a defined test objective that varies depending on the application, client expectations, delivery time, and the iterations it might take. 

  • Types of Software Testing

The different types of software testing are the technical side of the testing process that ensures the application is performing as intended. It is categorized into functional testing and non-functional testing. The functional tests check the application against business objectives, requirements, and functionings of its desired specifications and compatibility testing. The non-functional tests cover the app performance, security, usability testing, QA testing, and the operating system. Some popular software testing types include – acceptance testing, black box testing, exploratory testing, regression testing, white box testing, stress testing, and many others. 

 

Software testing methodologies vs types of software testing

Five Popular Software Testing Methodologies

While there are several models for testing, the list below emphasizes some of the popular and most used ones.

1. Waterfall Methodology

Waterfall Methodology

Amongst the rigid software testing methodologies, the waterfall methodology is one of those models where the focus is on a development process that follows a vertical path. It is characterized by its sequential processes where the next phase of the development process only begins after the previous phase is completed. There are five predefined phases within the waterfall model: Requirements, Design, Implementation, Verification, and Maintainance.

Testing Approach

The sequential path of a waterfall methodology has defined steps of order –

The ‘requirements’ phase ensures all the necessary requirements like testing objectives, organizational planning, draft documents, and the testing strategy is defined and fixed. The rigid documentation and planning make this model suitable for small applications compared to complex apps that might go through extensive changes. 

The project ‘design’ is then selected and approved by the decision-maker. Next, the development team implements the detailed design plan, and once it’s done, it’s ‘verified’ by the QA team and stakeholders. Once the project is verified and launched, the development team starts with ‘maintaining’ the software product until it is thoroughly tested for the final launch.

 

Waterfall software testing methodlogies

Advantages

  • It is a step-by-step laid out test strategy.
  • The methodology can be used to easily to plan and manage project requirements.
  • It is inexpensive and provides faster delivery of projects.

Disadvantages

  • Each step in the methodology is predefined and cannot be skipped.
  • It can’t absorb unplanned iterations.
  • Testing is pushed down for later in the list.
  • Even a slight iteration to the project plan can be expensive.

Use Cases

  • Customer Relationship Management systems
  • Human Resource Management systems
  • Supply Chain Management systems
  • Inventory Management systems
  • Point of Sale systems

2.Agile Methodology

Agile methodology

The agile testing methodology is based on the idea of iterative development, where development progress is made in rapid incremental cycles, also known as sprints. With complex applications and swift market demands, the agile methodology opens interactions with stakeholders to better understand their requirements. The communication cycle allows the team to focus on responding to the changes instead of relying on extensive planning that might eventually change. 

Testing Approach

The origin of the agile methodology was meant to break away from the rigid and model of development and testing that does not give space for iterations. This is one of the reasons that the testing team prefers using this approach for dynamic applications to accommodate constant feedback from stakeholders. With less priority towards documentation and more towards implementing changes, incremental tests and iterations are made instantaneously.

Instead of testing the entire system towards the end, every suggested iteration release is tested thoroughly. Furthermore, each iteration has its own cycle of requirements, design, coding, and testing cycle, making it a cyclical process. The test-driven development model is mostly used for adding new functionalities to an existing system, making it suitable for small projects with tight deadlines.

Agile software testing methodologies

Advantages

  • Complex application processes can be easily managed, changed, and tested.
  • Incremental tests minimize the cost and risks associated with numerous changes.
  • The constant communication between developers and clients determines the progress of the software application.
  • The focus of the methodology is on testing rather than planning.

Disadvantages

  • Increased to and fro with clients may lead to longer delivery times.
  • Less priority on planning may lead to documentation inefficiencies.
  • Constant changes make maintenance difficult.

Use Cases

  • Defining the testing scope of an application.
  • New functionalities in an application
  • Load and performance testing

3. Iterative Development Methodology

Iterative development

The methodology works by breaking down a large project into smaller components, where each component goes through a series of testing cycles. It is a data-driven model, and each iteration is based on the results of the previous test cycle. The repeated tests ease organizational management and streamline the software requirements before merging them into a final product. 

Testing Approach

The iterative development model follows a cyclical pattern for testing smaller components of a large project. Each iteration cycle is identical to a complete development cycle and consists of planning, design, testing, and evaluation phases. Once a cycle is complete, the component is added as an upgrade in the software. 

When software application requirements are loosely defined, the feedback from each iteration improves the functionality of the final product. This is the reason the model is most suitable for flexible applications with a focus on scalability.

Iterative software testing methodologies

Advantages

  • Smaller iterations for complex software applications decrease the time and cost of development.
  • Feedbacks of the iterative cycles are immediately available.
  • With each iteration cycle, the errors and bugs get removed at the initial development stages.
  • The model allows more flexibility and focuses on the design instead of documentation. 

Disadvantages

  • Communication overheads might increase significantly after each feedback. iteration 
  • The iteration cycle is rigid and cannot be overlapped.
  • Unpredictable feedback might delay the delivery of the final product.
  • A low priority on planning might lead to unforeseen circumstances.
  • User engagement is necessary for identifying risks.

Use Cases

  • Gaming applications
  • Streaming applications
  • SaaS applications
  • Prototype testing

4. Verification and Validation Methodology

V Model verification and validation methodology

The V-methodology is considered an extension of the waterfall model, used for small projects with defined software requirements. It follows a ‘V-shaped’ model that is categorized into coding, verification, and validation. With coding being the base of the model, each development phase goes hand-in-hand with testing, resulting in the early detection of errors in each step. 

Testing Approach

The ‘V-model’ stands apart from the waterfall model in terms of parallel testing procedures conducted at each development stage. The verification process ensures that the product is developed correctly, while the validation process ensures that it’s the right product as per requirements. 

The model starts with the static verification processes that include a business requirement analysis, system design, architectural design, and module design. Next, the coding phase ensures that a specific language and tools are chosen based on the coding standards and guidelines. Finally, the last phase of the validation ensures that each module and stage of development goes through unit testing, integration testing, system testing, and application testing. 

Advantages

  • Testing/validation at each stage allows the identification of errors early in the development cycle. 
  • It’s a cost and time-effective testing model.
  • The rigidity makes it ideal for small projects.
  • Each stage of the validation and verification has well-defined objectives.

Disadvantages

  • There is no inherent ability to respond to errors during the testing process.
  • There is no defined solution for eliminating the software defect.
  • The model is not suitable for large projects with higher chances of changes.
  • It cannot handle concurrent events.
  • There is no going back after a module has entered the testing phase.

Use Cases

  • Medical devices and software applications.
  • Government applications and software projects.
  • Defense projects and applications.
  • Commercial applications.

5. Rapid Action Development Methodology

RAD Model Rapid Action Development methodology

The testing model is a form of an incremental methodology that originated out of the agile software development system. The cornerstone of RAD is prototyping while parallelly developing components for the software, therefore, focusing more on testing rather than planning and documentation. While each software function is divided and designed as separate components, they are merged to form a prototype, collect end-user feedback, and make further iterations accordingly. 

Testing Approach

The RAD methodology consists of five phases through which the system components are developed and tested simultaneously. Each of these phases is time-bound and must be done promptly, making it suitable for projects with a tight deadline. 

The first phase, ‘Business Modeling’, identifies the business requirements and determines the flow of information towards other business channels. Once the flow is determined, the ‘Data Modeling’ phase reviews relevant data as per the business model. 

The third, ‘Process Modeling’, converts data objects to establish a business information flow. The phase defines the QA process through which the data objects can be further modified as per client feedback. This is done while keeping in mind that the application might go through multiple iterations over time. 

The fourth stage of ‘Application Generation’ is known as the prototyping phase, and the models are coded with automated tools. Finally, each prototype is individually tested in the ‘Testing and Turnover’ phase, reducing the errors and risks in the overall software application. 

RAD methodology

Advantages

  • Simultaneous designing and reusability of the prototypes reduce development and testing time.
  • The time-box approach at each incremental stage reduces the overall risks in the software project. 
  • Feedback cycles increase customer satisfaction.
  • The progress is measurable and data-driven.
  • Changes can be easily accommodated.

Disadvantages

  • The methodology is challenging to use with legacy systems.
  • Continuous client feedback and modifications can delay the deployment.
  • There is a high dependency on technical skills and resources.
  • Automation testing, tools, and code generation lead to higher costs.

Use Cases

  • Enhancing application graphic user interface.
  • Application prototypes (Wireframe, Design, and Clickable prototype)
  • System modularization.

QA Process Ebook

5 Steps for Establishing Test Automation in Microservices

Conclusion

Testing has always been an integral part of the software development life cycle. It enhances application performance, improves security, and provides quality assurance. But it is not as simple as utilizing a testing tool and running the application to look for errors. 

Testing goes hand-in-hand with planning, designing, implementing the code, and it would be wrong to treat it as an isolated process. Each software testing methodology offers productive solutions that make sure a software project meets the business requirements and maintains the user experience. 

With a talented pool of developers, our goal at Simform has always been to provide the best software testing services that drive product quality and customer satisfaction. Our selection of a testing methodology ensures that every software project goes through a rigorous testing process to offer the best product outcome. 

You can get an unbiased objective evaluation of your software applications from our experts and evaluate your testing strategies. Reach out to us by signing up or leaving a comment about your thoughts. 

Working from last 8 years into consumer and enterprise mobility, Hardik leads large scale mobility programs covering platforms, solutions, governance, standardization and best practices.

Your email address will not be published. Required fields are marked *

Areas We Serve