
AWS Cloud Cost
Optimization
Best Practices:
Learn how to save
your IT costs from
10+ real-life examples

Contents
00.	 Introduction �� 3

01.	 Six common AWS cloud cost optimization mistakes �������������������� 4
1.	Keeping redundant backups . 5
2.	Not utilizing AWS CloudWatch and Smart Alerts for AWS Costs

Monitoring . 5
3.	Not putting enough emphasis on developing a cost-conscious culture . 5
4.	Underestimating automation needs . 7
5.	Underestimating automation needs . 8
6.	Not monitoring resources properly .8

02.	 Best practices for optimizing your cloud infrastructure costs�������� 9
1.	Downsize under-utilized instances . 10
2.	Turn off idle resources . 11
3.	Delete unused EBS volumes . 13
4.	AWS spot instances . 16
5.	Minimizing data transfer costs . 18
6.	Use AWS compute savings plans . 19
7.	Design workloads for scalability . 20
8.	Identify less utilized Amazon RDS, Redshift instances 21
9.	Before & After cost optimization example . 22

03.	 Cost-saving tips�� 29

04.	 Concluding remarks! �� 32

05.	 We are Simform!�� 33

Segment, a popular customer data platform, empowers over 20,000+
businesses by enabling them with customer data to make better business
decisions. However, in September 2018, Segment realized that substantial steps
towards infrastructure cost reduction were required to boost their gross margin.
The business metrics looked impressive, including revenue growth, customer
churn, and new product attachments. However, the gross margin was a cause
of concern when they were contemplating a new funding round.

One of the board members commented, “Your gross margin is a bit of a
black eye on the whole economics of the business.”

So how did Segment pull it off?
The company witnessed many cost-
saving wins from pure infrastructural
enhancements, including network,
NSQs, CPU, and memory costs.
In addition, it found several places
where systems were contributing
significantly to the expenditures.

According to Segment’s engineering
leaders, more than 6000 of the total
sources were either not connected to
any destination or were directed to
destinations with expired credentials.
So they started a campaign to
reduce the total number of sources
without any associated destinations.
Moreover, they asked their customers
if they wanted to keep running any
underutilized sources, and with that,
they were able to save more.

Here’s what we learned from
Segment’s example:

	● It’s crucial to identify all areas of
cost savings. It’s impossible to
act without measuring things.

	● Once you identify the places,
make a plan. Then, make
everyone accountable for cost-
cutting efforts.

	● Build a repeatable monitoring
process instead of a one-time fix.

What did Segment finally achieve?
After all the optimizations, the gross
margin increased by 20% over 90
days. The company put systems and
monitoring to forecast the biggest
spending areas instead of focusing
on a one-time fix.

This ebook looks at real-world examples of adopting practices that focus
on “cloud cost optimization,” and practical ways to avoid skyrocketing your
cloud bills.

Introduction

4AWS Cloud Cost Optimization	

Six common AWS cloud
cost optimization
mistakes

01

5AWS Cloud Cost Optimization	

1.	 Keeping redundant backups
Amazon EBS snapshots are used
by cloud administrators to back up
data to Amazon S3 by taking point-
in-time snapshots. Even though
AWS has reduced the time and cost
of creating snapshots by retaining
the most recent versions, users still

pay more by keeping unnecessary
backups. As a result, snapshot
storage costs have increased. So it’s
recommended to investigate modern
backup capabilities based on your
requirements.

AWS CloudWatch is a monitoring
service that allows you to keep
track of large datasets created by
your AWS resources. Monitoring
your infrastructure regularly allows
you to visualize the data and take
quick actions. Unfortunately, cloud
practitioners frequently overlook
the importance of integrating such
critical monitoring tools with third-
party performance monitoring tools.

CloudWatch allows you to create
custom metrics, in addition to the
standard metrics, like CPU utilization
and network traffic. With AWS, it’s
also possible to set smart alarms that
monitor resource usage thresholds
and shut down resources when the
metric crosses the threshold.

2.	 Not utilizing AWS CloudWatch and Smart
Alerts for AWS Costs Monitoring

Businesses often want to lower their
cloud costs. However, they seem
to miss the mark when recognizing
scope and creating a cost-conscious
culture. The well-architected
framework of AWS focuses on
fostering a culture of cost-cutting
initiatives. Such frameworks aid in
developing financial management

practices and a better understanding
of cloud costs.

It is recommended that organizations
keep publicly visible cloud usage
and cost dashboards and emphasize
cloud cost optimization learning
practices.

3.	 Not putting enough emphasis on
developing a cost-conscious culture

6AWS Cloud Cost Optimization	

Case Example
Spotify decided to align engineering
and business goals after discovering
that its infrastructure costs were
quite high and outweighed user
acquisition. It decided to focus on
cloud spending by cultivating a cost-
conscious culture.

When engineering teams at Spotify
realized that cloud costs were
growing faster than income and
revenue, they saw it as a major
engineering problem and decided to
build a specific product to handle it.
They created an internal product to
control cloud spending as part of it.

The engineering leaders at Spotify
assist software engineers in making
better resource allocation decisions,
saving millions of dollars in cloud
costs.

They created the Backstage platform
as a developer portal to manage
the entire software delivery supply
chain, including all components,
data, pipelines, and services, from
concept to completion. Moreover,
they put Backstage in charge of
all engineering tasks, removing
complexity, such as launching a
Kubernetes cluster or provisioning a
pipeline.

Because it is based on a service
catalog model, Backstage quickly
became a place to bootstrap cost
insights; these cost insights also
support the labels of cloud provider
resources. The platform was created
so that organizations with shared
infrastructure services used by
cross-functional teams can properly
represent billing and differentiate
costs.

As a result, Backstage became the
central communication tool for the
engineering teams. Spotify wanted
cost optimization where developers
already spend most of their time
rather than encouraging them to use
a third-party system, so it became
the home for cost insights.

https://backstage.io/

7AWS Cloud Cost Optimization	

4.	 Underestimating automation needs
Manual tracking of resources,
configurations, and technical aspects
in large-scale projects often results
in complex and time-consuming
processes. On the other hand,
automation services are designed to
bring more visibility into processes in
a short time.

Organizations that want to increase
revenue should focus on practices
that allow them to spend less time

managing infrastructure and more
time developing core products.
Automating application deployment,
configuration monitoring, and other
time-consuming tasks, for example,
could help you create more efficient
products. You can also use auto-
scaling capabilities to save money on
applications that require on-demand
resources by utilizing automated
mechanisms.

Case Example
Compared to other organizations
that set budgets and impose strict
spending limits, Netflix, the world’s
largest streaming service, took a
different approach to managing its
data infrastructure costs. Netflix’s
data engineers wanted to bring cost
transparency as close to decision-
makers as possible. As a result, they
developed a custom data efficiency
dashboard that serves as a single
source of truth for cost and usage
patterns.

The cloud costs were aggregated
across platforms to create usage and
cost visibility and get a holistic view
of costs for each team.
Netflix engineers used a customized
approach to break down AWS
costs because AWS billing is
divided into services (EC2, S3,
and so on).Although AWS tags can

separate these services, that wasn’t
enough to provide granular visibility
into infrastructure costs.

For EC2-based platforms, they
looked at the platform’s bottleneck
metrics, such as memory, storage,
and IO. In addition, platform logs
and various REST APIs were used
to identify the consumption of
bottleneck metrics per data resource.

They also created a dashboard view
that provides context for taking data-
driven actions. As a result, when
dealing with multiple data platforms,
Netflix emphasizes consolidating
cost and usage patterns to create
feedback loops using dashboards.
This proves to be providing a great
outcome in tackling efficiency.

8AWS Cloud Cost Optimization	

5.	 Underestimating automation needs
The AWS platform has a lot to
offer organizations regarding cloud
services, storage, and pricing model
flexibility. Frequently, businesses lack
active management and knowledge
resources about the best pricing
plans for their needs. Predicting
the right pricing models is difficult
without knowing what resources
you’ll need and how you’ll use them.

AWS offers a wider range of pricing
options such as pay-as-you-go,
save when you commit, and volume-
based discounts. It has various
pricing models based on services
and database types. For example,
for Amazon EC2 instances, you can
choose instances types from the
on-demand model, such as spot

instances, saving plans, dedicated
hosts, and reserved instances.

You can choose on-demand
instances based on your business
needs; for example, users who prefer
the flexibility of EC2 at a low cost
with no upfront payment or long-term
commitment should choose the on-
demand model. It’s also appropriate
for applications with erratic traffic.

Other models, meanwhile, are
tailored to specific use cases, such
as applications that require flexible
start and stop times, applications
that require reserved instances, and
so forth.

6.	 Not monitoring resources properly
Not utilizing the pay-as-you-go model is a common blunder made by AWS
customers, particularly when performing application testing and in temporary
development environments. They also undervalue the AWS platform’s
automation tools and auto-scaling capabilities, resulting in the waste of valuable
financial resources. Moreover, they frequently use large storage pools and
database workloads without a proper monitoring mechanism, which harms the
bottom line.

For example, some idle EC2 instances used in the past for testing are left in an
active state and no longer in use.

9AWS Cloud Cost Optimization	

Best practices for
optimizing your cloud
infrastructure costs

02

10AWS Cloud Cost Optimization	

1.	 Downsize under-utilized instances
Downsizing one size in an instance family reduces costs by 50 percent. Let’s
take one example of m4.large and t2.small.

“Good intentions never work, you need good mechanisms to
make anything happen”

Jeff Bezos
Founder and Chief Executive Officer Amazon.com, Inc.

11AWS Cloud Cost Optimization	

The image shows that m4.large is
utilized less than 50% between 0 to
9 am. Server usage increases from
9 am to 2 pm. Here it requires two
m4.large instances. Again, usage
starts decreasing till 6 pm and
increases the night. As per the graph,
it is clear that a single m4.large can’t
be utilized even 50% of its capacity
during some specific period. It costs
$4.1/day. Under-utilized instances
should be considered as candidates
for downsizing either one or two
instance sizes.

Remember that downsizing one size
in an instance family optimizes costs
by 50 percent.

According to the server load graph,
we can use t2.small for utmost
utilization. As t2.small has a half
compute capacity as m4.large,
70 t2.small instances are required
instead of 41 m4.large instances.
Using t2.small instances, decision-
makers can save more than 60% of
the instance cost.

2.	 Turn off idle resources
Organizations use instances according to the highest peak of requirement, which
is not constant. Due to variations in the requirement, organizations have to pay
for non-utilized instances. To fully optimize cloud spend, turn unused instances
off. The below image shows how servers load varies on a particular day and then
turn off instances.

12AWS Cloud Cost Optimization	

As you can see in the above image,
server load can be handled by 1
instance, so you can turn off 2nd
instance to save the cost. During the
next 8 hours, server load increases
and requires two instances. Again,
server load decreases from 16 to 24,
and you can turn off 2nd instance.

Production instances should be
auto-scaled to meet the demand.
Shutting down development and
test instances in the evenings and
on weekends when developers are
no longer working can save up to
65 percent or more of costs. Also,
instances for training, demos, and
development must be terminated
upon projects completion.

Case Example
Union Bank of the Philippines will be
the first major bank to be fully cloud-
hosted. "We're a bank, but we're a
technology company first,"
said Dennis Omila, UnionBank's chief information and operations officer, on the
importance of scalability and cost optimization for cloud-based IT models.

“We no longer worry about capacity, slowdowns, or potential
data loss with SAP on AWS.”

Dennis Omila
Chief Information and Operations Officer, Union Bank of the Philippines

The Bank realized that running
SAP on AWS would be more cost-
effective as it aimed to serve 50
million Filipinos by providing digital
payment and cash management
solutions.

It also followed AWS's Well-
architected framework and security
practices to ensure cost optimization
and set up the SAP infrastructure as
part of the project.

13AWS Cloud Cost Optimization	

3.	 Delete unused EBS volumes
Keeping track of unused EBS
volumes and deleting those
contributing to AWS spending is
another way to keep costs down for
underutilized resources. Because
EBS volumes are independent of
Amazon EC2 compute instances,
they tend to persist even if the
associated EC2 instance is
terminated.

As EBS volumes are physically linked
to EC2 instances as storage devices,
you will be charged even if the
associated instances are no longer in
use.

You must choose the “Delete
on Termination” option when
launching them in order for them
to be terminated. In addition,
if no workflows are in place to
automatically delete EBS volumes,

the instances being spun up and
down may leave some EBS volumes.

Though this is a great way to stop
before it starts charging you, what if
you already have volumes attached
to the instances in your AWS
account?

You can identify and delete unused
EBS volumes in a variety of ways,
including

	● Using AWS’s well-designed
framework lens

	● Using the Amazon Web Services
Console

	● Detecting unused EBS volumes
with a Python script

	● In Java, using the AWS Lambda
function

The company focuses on application and platform management through
continuous improvement, automation, and cost reduction.
It also focused on right-sizing compute instances in AWS as part of cost
optimization, which reduced the cost of running SAP by 20-30%.

	● SAP operating costs were reduced by 20-30%
thanks to cost optimization strategies and well-
architected framework best practices.

	● System uptime and access have improved, and the system scales to support
100,000 new accounts per month.

14AWS Cloud Cost Optimization	

Before deleting a volume with AWS Console, you must first detach it and check
its status in the console.

	● When a volume is attached to an instance, it will be marked as
“in-use.”

	● If you detach a volume from an instance, it will appear in the “available”
state, and you can delete it.

For example, if you are planning to do it with Python script, you can identify and
delete the unused volumes in three steps:

	⊙ List and describe EBS volumes in an AWS account and region

import boto3

sess = boto3.Session(

 # TODO: Supply your AWS credentials & specified region

here

 aws_access_key_id='MYAWSACCESSKEYID',

 aws_secret_access_key='MYSECRETACCESSKEY',

 region_name='us-east-1', # Or whatever region you want

)

Next, we make a call to get all EC2 volumes:

This will return the list of all EC2 volumes in the specified region and account.
This will return a collection of EBS volume objects.

ec2 = sess.resource(‘ec2’)

volumes = ec2.volumes.all()

15AWS Cloud Cost Optimization	

to_terminate=[]

for volume in volumes:

 print(‘Evaluating volume {0}’.format(volume.id))

 print(‘The number of attachments for this volume is

{0}’.format(len(volume.attachments)))

 # Here’s where you might add other business logic for

deletion criteria

 if len(volume.attachments) == 0:

 to_terminate.append(volume)

You can also decouple the logic of filtering the deletion

logic and take different actions with different attributes.

	⊙ Filter the unattached EBS volumes

Next, we can filter this list and add the ones that are unattached to a termination
list

to_terminate. Check out the code below:

For example, you might delete all the unattached volumes and send a Slack
notification for all the volumes that aren't encrypted.

if len(to_terminate) == 0:

 print (“No volumes to terminate! Exiting.”)

 exit()

for volume in to_terminate:

 print(‘Deleting volume {0}’.format(volume.id))

 volume.delete()

	⊙ Delete the unattached volumes

To delete the volumes, you need to check for the empty condition as each
volume has a delete() method and then delete the volumes on the termination
list.

to_terminate. Check out the code below:

Source

https://relay.sh/blog/delete-unattached-ebs-volumes-with-python/

16AWS Cloud Cost Optimization	

4.	 AWS spot instances
On the AWS spot market, the traded products are Amazon EC2 instances, and
they’re delivered by starting an EC2 instance. It is very common to see 15-60%
savings, and in some cases, you can save up to 90% with spot instances.

How does it work?
You set a maximal bid price and
optionally a period up to 6 hours.
The price you pay is the spot price
each hour. When this price goes
above your specified maximum bid
price, the instance is terminated.
Be careful that the new console for
spot creates you a fleet, and even
terminating the instance yourself,

the fleet remains open. You need to
cancel the “spot request” (the fleet),
as well as terminate the instance(s)
when you are done. The instances
are guaranteed to remain active for
the specified amount of time up to 6
hours. See the below image for more
understanding.

There are many different spot markets available. A spot market is defined by:

	● Instance type (e.g. m3.medium)

	● Region (e.g. eu-west-1)

	● Availability Zone (e.g. eu-west-1a)

Each spot market is offering a separate current price. So when using spot
instances, it is an advantage to use different instance types in different
availability zones or even regions, as this allows you to noticeably lower costs.

17AWS Cloud Cost Optimization	

Case example
Ula, an Indonesian B2B eCommerce
marketplace application, used
Amazon EC2 spot instances
to implement a cost-effective

and scalable solution for small
businesses.

“AWS continues to guide us on how to build our business while
optimizing cost along the way.”

Samuel Pamudji
Engineering Manager, Ula

The goal of this app was to make the
user experience as simple and useful
as possible, taking into account a
small business owner's basic mobile
devices and their struggle with poor
network connections.

Ula was launched in January 2020
and has accrued a user base of over
100,000 in the last two years. When
the company's founders decided to
use Amazon Web Services (AWS)
because of their previous success
with the platform, they prioritized
the application's scalability and
high availability while keeping cost-
effectiveness in mind.

Ula planned for further expansion
across Indonesia and other
Southeast Asian countries and
adopted a fully containerized
approach, given that business
volume had increased by 300 times
since the company's launch. All of it
was successfully implemented using
Amazon Elastic Container Service
(Amazon ECS) Spot instances
in development, staging, and
production environments.

Aside from that, the startup made
use of AWS's well-architected tool
to ensure the high availability and
reliability of applications in the
production environment, resulting in
a 99 percent uptime.

18AWS Cloud Cost Optimization	

Case Example
Fork Media Group(FMG), a media-
tech company specializing in
contextual advertising, deployed
artificial intelligence and machine
learning tools to analyze content
sentiments before presenting an ad
to their customers.

It works with top international
and local online publications in
India, Southeast Asia, and the Gulf
Cooperation Council to serve ads to
7-9 million unique web visitors per
day (GCC).

FMG chose AWS to host its ad server
databases in order to maximize the
platform's capabilities and visibility.
It dynamically scaled its capacity to
meet the demands of traffic spikes
using Amazon EC2 and Amazon EC2
spot instances, resulting in a 30%
cost reduction and a 50% decrease
in ad delivery latency.

5.	 Minimizing data transfer costs
Make sure your Object Storage and Compute Services are in the same region
because Data transfer is free in the same region. For example, AWS charges
$0.02/GB to download the file from another AWS region. If you perform a lot
of cross-region transfers, it may be cheaper to replicate your Object Storage
bucket to a different region than download each between regions each time.

Let’s understand it with AWS S3’s example.

1GB data in us-west-2 is anticipated
to be transferred 20 times to EC2
in us-east-1. If you initiate an inter-
region transfer, you will pay $0.20 for
data transfer (20 * 0.02). However, if
you first download it to mirror the S3
bucket in us-east-1, you pay $0.02
for transfer and $0.03 for storage
over a month. It is 75% cheaper. This
feature is built into S3 called cross-
region replication. You will also get
better performance along with cost-
benefit.

Use AWS content delivery network
called CloudFront If there are a lot of
downloads from the servers stored in
S3 (e.g., images on consumer site).

There are CDN providers such as
Cloudflare that charge a flat fee. If
you have a lot of static assets, then
CDN can save money over S3, as
just a tiny percent of original requests
will hit your S3 bucket.

19AWS Cloud Cost Optimization	

6.	 Use AWS compute savings plans
Compute Savings Plans are applied
to all EC2 and Lambda instances,
regardless of instance family, region,
size, or tenancy. If you use AWS for
one year, you can save up to 54%
compared to on-demand pricing,
and you don't have to pay anything
upfront.

Use AWS Cost Explorer to keep
track of your AWS cloud costs and
usage monthly or daily. By signing
up for these plans, your compute
usage is automatically charged at the
discounted Saving Plans prices, and
any use beyond the commitment is
charged at regular on-demand rates.

Case Example
What Airbnb accomplished in just
nine months is truly remarkable
and deserves to be called a cost-
conscious culture in the proper
sense. Airbnb reduced its hosting
costs by $63.5 million over the years,
resulting in a 26 percent decrease in
its cost of revenue.

It established a cost-conscious
culture from the top down, as well
as various organizational efforts to
control AWS costs.

What made Airbnb a model for companies focusing on "cost-
consciousness"?

	● Its emphasis is on generating cost data through the use of specialized
exploration and visualization platforms such as Apache Superset. Terraform
was also used as a configuration tool to ensure that AWS resources were
assigned to the projects.

	● Furthermore, it implemented cost-conscious practices, such as ingesting the
Cost and Usage Report, which is widely regarded as the most accurate and
comprehensive source of AWS billing.

	● AWS Saving Plan was used in the majority of their computing resources, to
optimize on-demand charges and keep utilization appropriate by allowing
certain workloads to be moved on and off Saving Plan.

https://medium.com/airbnb-engineering/superset-scaling-data-access-and-visual-insights-at-airbnb-3ce3e9b88a7f
https://docs.aws.amazon.com/cur/latest/userguide/what-is-cur.html

20AWS Cloud Cost Optimization	

7.	 Design workloads for scalability
For any public cloud, scalability is
critical. Scalability uses event-driven
compute instances like AWS Lambda
or containers like Google Container
Engine to scale core services for
important workloads, such as
microservices. These techniques are
intended to utilize more computing
when necessary . Once the
requirement increases, those related
resources are released for reuse.

Suppose you are running a dynamic
platform with various products and
services. In that case, you need an
auto-scaling capacity that delivers
faster solutions and a system that
doesn't crash with unpredictable
website traffic. Or imagine a
streaming platform like Spotify where
artists post their music albums, and
the platform plays a critical role in
generating revenue.

You can design your workloads for
scalability with AWS EC2, Elastic
Load Balancing, and auto-scaling.
It's easy to serve billions of users a
day in a few months and deploy new
features and code on a daily basis
using these instances and services.

For example, Beat, a top ride-
hailing app in Latin America, started
experiencing outages in its system
after reaching hypergrowth in 2019.
It had over 700,000 drivers and
more than 20 million users across
6 countries. Initially, the company
managed the architecture with
Amazon EC2, Amazon Aurora,
AWS Auto Scaling, and Amazon
ElastiCache. But at some point, it
reached an end where the teams
could only scale vertically, which led
to frequent bottlenecks and hours-
long downtime.

Beat reevaluated its architecture
by dividing the traffic into as many
instances as possible and used
Amazon ElasticCache for Redis
to distribute the load balance. By
using Amazon ElastiCache for Redis
and AWS Enterprise Support, Beat
enabled the cluster mode, improved
the operations, performed horizontal
scaling, reduced compute load
by 90%, and achieved zero time
virtually.

21AWS Cloud Cost Optimization	

8.	 Identify less utilized Amazon RDS,
Redshift instances
Identify DB instances that have no
connection over the last 7 days using
the Trusted Advisor Amazon RDS Idle
DB instances check. You can reduce
costs significantly by stopping these
DB instances using the DB instance
stop and start feature in Amazon
RDS for up to 7 days. This is one
of the cost-effective ways to use
Amazon RDS databases, as you
can limit the costs when you are not
using them.

For Redshift, AWS allows you to
pause the clusters which have
had no connections for the last 7
days, and there is less than 5%
cluster-wide average CPU utilization
for 99% of the previous 7 days.
Identify underutilized clusters over
the previous 7 days using Redshift
clusters check.

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/

22AWS Cloud Cost Optimization	

Let’s understand cost optimization with this example case of
before and after optimization is performed.

Before Cost Optimization
This section will analyze the actual
cost of running AWS services for our
demo application.

Let’s assume our example is an
image upload processing application
in which users can upload images,
resize, crop, and take backups. Our
goal is to optimize cloud costs by
making some modifications and
choosing a suitable instance family.

Following AWS services are used in
the application architecture.

	● Cloud front CDN

	● AWS EC2 (10 instances)

	● Amazon RDS

	● Amazon S3

	● Amazon DynamoDB

	● AWS application load balancer

	● AWS EC2 (1 instance)

Below is the architecture of our image upload application:

9.	 Before & After cost optimization example

23AWS Cloud Cost Optimization	

We’ll consider the application architecture parts that contribute and are relevant
for specific cost calculations. Finally, we’ll try to keep the calculation simple for
better understanding.

Suppose the application is in the US-EAST-1 region, all prices are calculated for
this geographic region.

Consider that the application handles approximately 3 million requests per
month. Therefore, the free tier from all the services has been excluded, and
pricing is within the US-EAST-1 region.

CloudFront CDN

We’ll require 100 GB storage for storing the images, for which the
CloudFront CDN pricing is 0.085 per 100 GB, which will cost $
8.5.

AWS EC2

AWS allows users to select pricing models based on their
demand.

	� In the case of our application, images are going to be uploaded
in bulk. So we are using 10 large T2 instances which costs
$0.032/ hr each.

	� If we are using it for 24 hours and 30.5 days, it will cost us= 10
x $ 0.038 x 24 x 30.5= $ 278.16

Amazon S3

For storage, we will be using S3 to store static content like
HTML, CSS and Java.

The S3 costs $0.02 for standard storage of 1 GB. In our case, the
storage is 100 GB so it will cost $2.

24AWS Cloud Cost Optimization	

Amazon RDS

Here are pricing examples (applicable to MySQL DB instances that
are deployed in a single Availability Zone (AZ) within the US East
region):

	� No upfront payment—$0 upfront cost, $8.76 monthly rate (effective
hourly rate of $0.012), 29% saving compared to on-demand

	� Partial upfront payment—$50 upfront cost, $4.161 monthly rate
(effective hourly rate of $0.011), 33% saving compared to on-demand

	� Full upfront payment—$98 upfront cost, $0 monthly rate (effective
hourly rate of $0.011), 34% saving compared to on-demand

In our example, we are utilizing No upfront payment cost which is $8.76/
month.

AWS Application Load Balancer

	� AWS pricing for Application Load Balancer:

	� $0.0252 per ALB-hour (or partial hour)

$0.008 per LCU-hour (or partial hour)

Here, the LCU measures dimensions on which the Application Load balancer
processes traffic.

	� The main dimensions considered are new connections, active
connections, processed bytes, and rule evaluations.

	� New connections are described as newly established connections per
second.

	� Active connections are the number of active connections per minute.

	� Processed bytes are the number of processed bytes by the load balancer
in GBs for requests and responses.

	� Rule evaluations are the number of rules processed by the load balancer
and the request rate. These rules are evaluated based on priorities from
the lowest value to the highest. It's used for evaluating the priorities of
requests and the availability of servers.

25AWS Cloud Cost Optimization	

For our use case, at 35,000GB per month (the sum of ingress and egress),
this averages at 49 GB per hour so an average of 49 LCUs.

That gives an approximate monthly cost of $300 per month: ($0.0252 +
$0.008 * 49) * 24 hours * 30 days.

AWS EC2 (1 instance)

In our example, we are using 1 large T2 instance of EC2 which
costs $0.038/ hr. If we use it for 24 hours and 30.5 days, the total
cost will be $27.82.

Total Costs Before Optimization

Cloudfront CDN $ 0.085 x 100 = 8.5

AWS EC2 (10 instances) 10 x $ 0.038 x 24 x 30.5= $ 278.16

Amazon S3 $0.02 x 100= $2

Amazon RDS $8.76

AWS Application Load Balancer $300

AWS EC2 (1 instance) 1 x $0.038 x 24 x 30.5 = $27.82

Total $ 625.24

26AWS Cloud Cost Optimization	

After cost optimization
We will take each of the services one by one and see how we can optimize costs
with some changes in our approach.

CloudFront CDN

One of the most common uses of CloudFront is delivering web
and media content stored in an S3 bucket or EC2 instance to
clients worldwide.

While optimizing CloudFront services, we have the following options to save
costs:

WWWTotal cost optimization for CDN (30%) = $ 5.44

AWS EC2

In EC2, we have two options to reduce costs:

	� We can run instances for 100% of the time and use 10 x T2
Large instances = $120

	� Or we can autoscale instances from 2 to 10, 2 x large
T2@100% utilization + 8 x small T2@15 % utilization = $98

27AWS Cloud Cost Optimization	

Amazon RDS

By rightsizing Amazon RDS instances,in our application, we can
get 30% cost savings = $ 6.13

AWS Application Load Balancer

The only opportunity to save cost on AWS application load
balancer is to remove any idle resources.

We can save costs around 20% by eliminating idle resources

= 240 $

AWS Lambda

Instead of using AWS EC2 T2 large instances to handle small and
moderate workloads, we’ll replace them with AWS Lambda since
EC2 is costly. We can save additional costs by choosing AWS
Lambda.

For simplicity, let’s assume your application processes 3 million requests
per month. The average function execution duration is 120 ms. You have
configured your function with 1536 MB of memory, on an x86 based
processor.

Amazon S3

For S3 also, we can optimize costs using two ways:

࡟	 In our example, if we use Infrequent Access Storage (IAS) to cut
the storage cost by a factor of 2, we can save upto 50 % costs
= $1

࡟	 If we use Amazon Glacier storage class, which has same
durability as S3, the costs can be cut upto 30% = $1.40

28AWS Cloud Cost Optimization	

Monthly request charges
The monthly request price is $0.20 per 1 million requests and the free tier
provides 1 million requests per month.

Total requests – Free tier requests = monthly billable requests
3 million requests – 1 million free tier requests = 2 million monthly billable
requests
Monthly request charges = 2M * $0.2/M = $0.40

Total monthly charges
Total charges = Compute charges + Request charges = $2.33 + $0.40 = $2.73
per month (98% costs savings)

Total cost optimization for CDN
(30%)

 $ 5.44

AWS EC2 $98

Amazon S3 $1.40

Amazon RDS $6.13

Application load balancer 240 $

AWS Lambda $2.33 + $0.40 = $2.73 per month
(98% costs savings)

Total cost saved $ 353.17

Monthly compute charges

The monthly compute price is $0.0000166667 per GB-s and the free tier
provides 400,000 GB-s.

Total compute (seconds) = 3 million * 120ms
= 360,000 seconds

Total compute (GB-s) = 360,000 * 1536MB/1024 MB
= 540,000 GB-s

Total compute – Free tier compute monthly billable compute GB- s

540,000 GB-s – 400,000 free tier
GB-s

140,000 GB-s

Monthly compute charges 140,000 * $0.0000166667 = $2.33

29AWS Cloud Cost Optimization	

	� Use discounted instances
For Amazon Web Services, it is critical
to comprehend the discount options
for instances in order to optimize cloud
costs. AWS Reserved Instances offers
a discount in exchange for a one-year
or three-year commitment, with the
longer commitment providing a greater
discount. Depending on the RI(Reserved
Instance) term, instance type, and region,
discounts range from 24 to 75 percent.

	� Delete or migrate unwanted files after a certain date
Data deletion and migration between storage types can be configured
programmatically by cloud architects. Long-term storage costs are drastically
reduced as a result of this. Lifecycle Management is a feature that all of the
major cloud vendors offer. Active data, for example, can be stored in Azure
Blob Standard storage. However, if certain data begins to show signs of
infrequent access, users can set up rules to move that data to Azure Cool
Blob storage, which has a lower storage rate.

Many deployments use Object Storage for log collection. You may automate
deletion using life cycles. Delete objects 7 days after their creation time.
E.g., if you use S3 for backups, it makes sense to delete them after a year.
Similarly, you can use the Object Lifecycle management feature in Google
cloud and the expiration of Blobs in Azure.

	� Compress data before storage.
Compressing data reduces your storage requirements. Subsequently,
reducing the cost of storage. Using fast compression algorithms such as LZ4
gives better performance. LZ4 is a lossless compression algorithm, providing
compression speed at 400 MB/s per core (0.16 Bytes/cycle). It features
an extremely fast decoder, with a speed of multiple GB/s per core (0.71
Bytes/cycle). In many use cases, it makes sense to use compute-intensive
compressions such as GZIP or ZSTD. So, compressing data will reduce your
cloud waste significantly.

Cost-saving tips

30AWS Cloud Cost Optimization	

	� Take care of incomplete multipart uploads
Many partial objects were uploaded to Object Storage but were interrupted
during the process. Even 1% of incomplete uploads can waste terabytes of
space if you have a petabyte Object Storage bucket. After 7 days, you should
clean up any incomplete uploads.

	� Reduce the cost of API access
The cost of API access can be reduced by using batch objects and avoiding a
large number of small files. Since API calls are charged per object, regardless
of its size. Uploading 1-byte costs the same as uploading 1GB. So usually,
small objects can cause API costs to soar.

For example, in AWS S3, PUT calls cost $0.005/1000 calls. So uploading
a 10GB file in 5MB chunks will cost roughly $0.01. Whereas for 10KB file
chunks, it will cost approximately $5.00.

Similarly, it is bad to use CALL/PUT options with tiny files using S3. It makes
sense to use batch objects or a database such as DynamoDB or MySQL
instead of S3. 1 writes per second in DynamoDB costs $0.00065/hour.
Assuming 80% utilization, DynamoDB will cost $0.000226/1000 calls. This is
95% cheaper to use DynamoDB compared to AWS S3.

The S3 file names are not a database. Relying too much on S3 LIST calls is
not the right design and using a proper database can typically be 10-20 times
cheaper.

	� Cache storage strategically
Use memory-based caching, such as AWS ElastiCache. Caching improves
data accessibility by moving important or frequently accessed in-memory
instead of retrieving data from storage instances. This can reduce the
expense of higher-tier cloud storage and improve the performance of some
applications and websites.

It gives the best results for performance-sensitive workloads which run in
remote regions or when efficient replication is needed for resilience.

31AWS Cloud Cost Optimization	

	� Use auto-scaling to reduce spending during off-hours.
Most apps have busier and slower periods throughout the week or day. Taking
advantage of auto-scaling could save you some money during slow periods.

These deployment types all support auto-scaling:

	� Analyze Amazon S3 usage and reduce costs
Leverage recommendations of S3 analytics and analyze storage access
patterns on the object data set for 30 days or longer. AWS offers you Amazon
S3 Glacier Storage classes which are purpose-built for archiving the data,
and it provides you the lowest cost archive storage in the cloud. Utilize S3
Infrequently Accessed for practical recommendations of reducing storage
costs effectively.

Scaling could also mean shutting your app down completely. You can use
“AlwaysOn” feature provided by App Services that controls if the app should
shut down due to no activity. You could also schedule shutting down your
dev/QA servers with something like DevTest Labs.

Cloud Services App Services VM Scale Sets
(Including Batch, Service
Fabric, Container Service)

https://docs.aws.amazon.com/AmazonS3/latest/dev/analytics-storage-class.html
https://aws.amazon.com/s3/storage-classes/glacier/
https://aws.amazon.com/s3/storage-classes/glacier/
https://aws.amazon.com/s3/storage-classes/#__

Concluding remarks!
While cloud vendors are constantly evolving processes, technologies, and
platforms, businesses should invest more in cloud platforms and recognize the
importance of best practices and tailored cloud strategies.

Furthermore, if you're already an AWS cloud customer, you should take
advantage of its programs, which include a well-architected review framework
and immersion days organized by Advanced Consulting Partners like Simform.

What does it mean to be an AWS customer in general?

	● Cloud migration strategy that is tailored to your needs

	● AWS Partner Programs is being used.

	● AWS Certified Partners are a great way to get started.

	● Making a business case for cloud computing (aligning business goals with
cloud strategies)

	● Using various pricing models

	● Implementation of DevOps and Agile methodologies

DevOpsCloud native development
and modernization

We are Simform!
With over 10+ years of experience
under our belt, we are more than
ready to supercharge your project
with extraordinary code. 10 years
ago, Simform was one person.
Today, we're over 600+ people strong
and growing.

Simform is a custom software
development powerhouse. Let's get
in touch to discuss your next project!

Managed software
engineering teams

Quality Engineering and
Testing

Contact Us

https://www.simform.com/services/devops/
https://www.simform.com/services/cloud-development/
https://www.simform.com/services/software-development/
https://www.simform.com/services/software-testing/
https://www.simform.com/contact/

	Introduction
	Six common AWS cloud cost optimization mistakes
	1.	Keeping redundant backups
	2.	Not utilizing AWS CloudWatch and Smart Alerts for AWS Costs Monitoring
	3.	Not putting enough emphasis on developing a cost-conscious culture
	4.	Underestimating automation needs
	5.	Underestimating automation needs
	6.	Not monitoring resources properly

	Best practices for optimizing your cloud infrastructure costs
	1.	Downsize under-utilized instances
	2.	Turn off idle resources
	3.	Delete unused EBS volumes
	4.	AWS spot instances
	5.	Minimizing data transfer costs
	6.	Use AWS compute savings plans
	7.	Design workloads for scalability
	8.	Identify less utilized Amazon RDS, Redshift instances
	9.	Before & After cost optimization example

	Cost-saving tips
	Concluding remarks!
	We are Simform!

